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Abstract
We investigate stochastic resonance (SR) in a periodically driven Langevin
system on a circle. The bifurcation parameter of the system and the amplitude
of the periodic signal are controlled. The response amplitude that characterizes
the degree of the amplification of the input periodic signal and the quality factor
that is a coherence measure of the spontaneous periodic motion sustained by
noise are computed and plotted as functions of the noise intensity. According to
different parameter values, four types of behaviour are observed, as the results
of interplay between two types of stochastic resonances, the spontaneous SR
and conventional SR, respectively.

PACS numbers: 05.40.−a, 02.50.Ey

1. Introduction

Since its introduction in 1980s by Benzi et al [1] and later by Nicolis et al [2], stochastic
resonance (SR) has been the subject of current interest. For a recent review, see [3]. The
term SR was originally referred to as a cooperative phenomenon in a nonlinear system, where
a weak signal can be amplified and optimized by the assistance of noise [4–10]. Here three
important ingredients, namely, a kind of threshold, a weak periodic modulation (signal) and a
source of noise are thought to be necessary. Given these features, SR has been observed in a
large variety of models, such as bistable ring laser [11], chemical reaction [12, 13], electronic
system [14] and neuron systems [15–17], etc. Later, some authors found that SR can also
happen in the absence of a periodic excitation [18–21]. This phenomenon of SR reflects
a certain periodicity of the system driven only by white noise, here we introduce the name
spontaneous SR to discriminate it from the conventional SR (i.e., with a periodic excitation).

Recently, the effective role of noise in the following Josephson junction system has
attracted much attention [22, 23]

αθ̈ + βθ̇ + sin θ = b + A cos ωt + Dξ(t) (1)
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whereby θ is the phase difference across the junction, α = h̄C/2e, β = h̄/2eR, b and A are
the amplitudes of the dc and ac microwave components of the current through the junction,
and ξ(t) is the Gaussian white noise satisfying: 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = δ(t − t ′).

System (1) also describes the motion of a damped pendulum, with mass α, damping
coefficient β, driven by torque and a periodic force plus white noise.

For system (1) without periodic driving (A = 0), the phenomenon of SR has been
systematically investigated in our previous paper [26]. However, in the presence of a periodic
driving, even the deterministic dynamics of the system is much more complicated. It may
exhibit phase locking, chaos and hysteresis if the parameter is varied [25]. Nevertheless, when
β > 2α, the dynamics of system (1) in the deterministic case is clear, it has a one-dimensional
periodic horizontal curve which attracts orbits exponentially [27]. Therefore the long-time
behaviour of system (1) is similar to that of the following Langevin equation:

ẋ = b − sin x + A cos ωt + Dξ(t). (2)

Due to the close resemblance of the dynamics between system (2) and system (1) in the
regime β > 2α, in this paper, we give a systematic investigation of the interplay of noise
and a periodic excitation in system (2). We will show new SR effects by controlling the
bifurcation parameter b of the system and the amplitude A of the periodic signal. Precisely,
for b < 1 and a weak periodic driving A � 1, besides a conventional SR as a best cooperative
result of a periodic driving and noise, the system also preserves the original spontaneous SR
sustained by noise; while for a subthreshold (A < 1 − b) but relatively large periodic driving,
no conventional SR but only spontaneous SR exists. As for the case b < 1, A > 1 − b, the
noise-background spectrum is well suppressed and only the conventional SR phenomenon
exists.

The paper is organized as follows. In section 2, we will present a qualitative investigation
of the phase portrait of the deterministic system (2) for b < 1 and some mathematical proofs,
which makes the dynamical picture completely clear. Then in section 3, we will investigate
the occurrence of SR as well as its physical interpretation based on the phase portrait.

2. Qualitative analysis of the deterministic dynamical behaviour

The deterministic dynamics of equation (2) can be characterized as

ẋ = b − sin x + A cos ωt. (3)

In the literature, the traditional way to explore the existence of a periodic solution is to
take the signal term as a small perturbation. However, for large values of A, perturbation
theory is no longer valid. To explore the dynamical behaviour of system (3) for both small
and large periodic modulations, here we transform equation (3) into an autonomous system
by setting y = A cos ωt and z = A sin ωt , then equation (3) equivalently becomes


ẋ = b − sin x + y

ẏ = −ωz

ż = ωy.

(4)

Because of the periodicity in x, a solution to equation (4) can either be regarded as a curve
winding on a cylinder E2 : y2 + z2 = A2 or on a torus T = S1 × S1.

Let ẋ = 0, one has b − sin x + y = 0, i.e. y = sin x − b. Considering the intersection of
the surface y = sin x − b with E2 for b < 1, there are two different cases:

Case 1. A � 1 − b, where the phase y = sin x − b divides the cylinder into three parts
in every strip [2kπ − π/2, 2kπ + 3π/2] of x. In every neighbouring part, ẋ changes sign (see
figure 1(a)).
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Figure 1. The intersecting cases of the surface y = sin x −b with cylinder E2. (a) 0 < A < 1−b,
(b) 1−b < A < 1 +b and (c) A > 1 +b, where the sign ‘+’ represents ẋ > 0, while ‘−’ represents
ẋ < 0.

Case 2. A > 1−b, where the phase y = sin x−b divides the cylinder into two sections in
every strip [2kπ − π/2, 2kπ + 3π/2] of x. In this case, the intersection for 1 − b < A < 1 + b

is like figure 1(b) and that for A > 1 + b is like figure 1(c).
In the following we will investigate the dynamical behaviour of system (4) for b < 1 in

these two cases, respectively. The case b > 1 is of no interest [20].

2.1. Case 1: A � 1 − b

For the periodicity of sin x, we only need to consider x ∈ (−π/2, 3π/2).
Let

G1 : {(t, x)|t ∈ R,−π/2 < x � π/2} G2 : {(t, x)|t ∈ R,π/2 < x � 3π/2}
be two ring-shape regions on the cylinder E2. Obviously, there is no equilibrium point in
G1 and G2. Any orbit moving along the boundary of G1 will eventually enter G1 and any
orbit moving along the boundary of G2 will eventually leave G2. So by Poincaré–Bendixion
theorem on a cylinder, at least one stable limit cycle (SLC) lies in region G1 and at least one
unstable limit cycle (ULC) lies in G2.

In the following, we will prove that there exists at most one SLC in G1 and at most one
ULC in G2. Otherwise, if there are two limit cycles in G1, then the corresponding solutions
to (4) can be written as

LC1 :




x1 = f1(t)

y1 = A cos ωt

z1 = A sin ωt

LC2 :




x2 = f2(t)

y2 = A cos ωt

z2 = A sin ωt.

Obviously, LC1 and LC2 should have the same periodicity T = 2π
ω

.
It follows from equation (4) that

ẋ2(t) − ẋ1(t) = sin x1 − sin x2.

Then

[x2(t) − x1(t)] − [x2(0) − x1(0)] =
∫ t

0
(sin x1 − sin x2) dt.

Suppose x1 < x2. Since x1, x2 ∈ (−π
2 , π

2

)
, then sin x1 − sin x2 < 0. As a result,

[x2(T ) − x1(T )] − [x2(0) − x1(0)] < 0. This contradicts the fact that x1(t), x2(t) are two
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periodic solutions to equation (4). Therefore, there is only one SLC in region G1. Similarly,
only one ULC can exist in G2.

2.2. Case 2: A > 1 − b

Firstly, let us investigate the situation for ω � 1. We introduce the following transformation:

� :

{
ξ = exy

η = exz.

Obviously, the transformation � is a homeomorphism. It maps a ring-shaped region on
E2 to a ring-shaped region on the ξ–η plane and maps a cycle C : x = xc on E2 to a circle
C ′ : ξ 2 + η2 = A2 e2xc on the ξ–η plane. The inverse transformation of � can be expressed as

�−1 :




x = 1
2 ln

(
ξ 2

A2 + η2

A2

)
y = ξ

(
ξ 2

A2 + η2

A2

)− 1
2

z = η
(

ξ 2

A2 + η2

A2

)− 1
2 .

So we only need to study the dynamics of the following equivalent system:{
dξ

dt
= ẋξ − ωη

dη

dt
= ẋη + ωξ

(5)

where ẋ = b − sin
(

1
2 ln ξ 2+η2

A2

)
+ ξ

(
ξ 2

A2 + η2

A2

)−1/2
.

Let t = s
ω

, then{
dξ

dt
= −η + 1

ω
ẋξ

dη

dt
= ξ + 1

ω
ẋη.

(6)

To judge the existence of limit cycles of system (6) for ω � 1, we cite the following
lemma without proof ([28]):

Lemma 2.1. Let{
ẋ = −y + λf1(x, y)

ẏ = x + λf2(x, y)
(7)

be a perturbation of a linear dynamical system{
ẋ = −y

ẏ = x.
(8)

Suppose that the equilibrium point (0, 0) of equation (8) is still the unique equilibrium of
system (7), but no longer of central type for λ �= 0. Let

�(r) =
∫ 2π

0
[xf1(x, y) + yf2(x, y)] dt

where x = r sin t, y = r cos t , then

(1) For λ � 1, the necessary condition for equation (7) to have a closed orbit near the orbit
Lr0 : x = r0 sin t, y = r0 cos t of equation (8) is �(r0) = 0.

(2) If r0 > 0,�(r0) = 0 and r0 is not the extreme point of �(r0), then for λ � 1,
equation (7) has a closed orbit near Lr0 .

(3) If �(r0) = · · · = �(2k)(r0) = 0, and �(2k+1)(r0) < 0, then for λ � 1, equation (7) has a
limit cycle near Lr0 . It is stable for λ > 0 and unstable for λ < 0.
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For equation (6), let ξ = r sin s, η = r cos s, f1 = ξ ẋ, f2 = ηẋ, we have

�(r) = 2πr

ω

(
b − sin

(
ln

r

A

))
.

The roots of �(r) = 0 are: r0 = 0 (discarded), r1 = A exp(arcsin b) and r2 = A exp(π −
arcsin b), the corresponding first derivatives are: �′(r1) = − 2π

ω

√
1 − b2 < 0 and �′(r1) =

2π
ω

√
1 − b2 > 0.
According to lemma 2.1, we know that for ω � 1, system (6) has a SLC at

ξ = r1 sin s, η = r1 cos s and a ULC at ξ = r2 sin s, η = r2 cos s. Except for these two
limit cycles, no other limit cycle exists for x ∈ (−3π/2, π/2]. Correspondingly, system (4)
has a unique SLC at x = arcsin b and a unique ULC at x = π − arcsin b in (−3π/2, π/2].

Now let us consider the situation for ω � 1. Here we take the case 1 − b < A < 1 + b

for example to prove the nonexistence of the limit cycle. Let Hk : {(z, y, x)|2kπ − π/2 <

x � 2kπ + 3π/2} be a ring-shaped region of system (4) on the cylinder (k ∈ Z). If there is a
limit cycle, obviously it could not interact with both Hk and Hk+1. Otherwise, it contradicts
the direction of the vector fields. So the limit cycle can only exist in the region Hk , hence its
amplitude is smaller than 2π .

Let {(z(t), y(t), x(t))}t�0 be any limit cycle in Hk, a = A−(1−b)

2 , and

F(t) = sin ωt − 1 − b + a

A
ωt.

Then F(0) = 0, F ′(t) = ω
(
cos ωt − 1−b+a

A

)
. If t ∈ (

0,
arccos 1−b+a

A

ω

]
, then F ′(t) � 0. For

sufficiently small ω
(
0 < ω < a

2π
arccos 1−b+a

A

)
, we can select t1 ∈ (

2π
a

,
arccos 1−b+a

A

ω

)
, such that

t1a > 2π . Then F(t1) � 0, i.e.,

sin ωt1

ωt1
� 1 − b + a

A
.

So for these ω, we have

x(t1) − x(0) = bt1 −
∫ t1

0
sin x(s) ds + A

sin ωt1

ω

> t1

(
b − 1 + A

sin ωt1

ωt1

)

> t1

(
b − 1 + A

1 − b + a

A

)
= t1a > 2π.

This contradicts the fact that a periodic solution can only lie in the region Hk with the amplitude
smaller than 2π . So for ω � 1, and 1 − b < A < 1 + b, system (3) has no limit cycle on the
cylinder.

Remark. Summarizing the above two cases, we know that for every fixed value of b, there
exists a critical function ω = ωc(A) such that for ω > ωc(A), system (4) has two limit cycles,
while for ω < ωc(A), no limit cycle exists.

3. Numerical simulations for stochastic resonance

Based on the above mathematical analysis, now let us investigate the influence of noise on
system (4). To measure noise-induced enhancement of the amplitude of a periodic signal,
we average power spectra of 150 runs of the time series of {sin x(t)}t�0 and calculate the
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Figure 2. The phase portrait of system (4) for b = 0.97, A = 0.02, ω = 0.2: (a) the stable limit
cycles and unstable limit cycles on the cylinder E2 for two neighbouring periodic strips of x,
(b) the limit cycles cut along one generator of the cylinder and developed to a plane for one period
strip of x.

response amplitude RA to characterize the occurrence of SR. Here RA = R1
R0

, where R1 is
the amplitude of the output at the driving frequency in a noisy background and R0 is the one
in the deterministic case.

3.1. A � 1 − b

In this parameter region, for every driving frequency ω, the deterministic system (4) has
a stable limit cycle and a unstable limit cycle on every strip (2kπ − π/2, 2kπ + 3π/2]
(k = 0,±1,±2, . . .). To investigate the behaviour of the system in the presence of noise
perturbation, here we consider different sets of system parameters. Firstly, let us see the
situation for a weak periodic driving (we take b = 0.97, A = 0.02, ω = 0.2 for illustration).
Figure 2 is the phase portrait of the deterministic system, where SLCs with 2kπ phase
difference are displayed. And figure 3(a) shows the power spectrum of the deterministic
output. There one sees a short spectrum peak at the driving frequency. When noise is
included, hopping motion from one SLC to the next SLC via a ULC on the cylinder happens.
Reflected in the power spectrum, there is an enhanced spectrum peak at the driving frequency
(see figure 3(b)). With the noise intensity D increasing, the height of this peak correspondingly
increases until reaching a maximum at about D = 0.3, which manifests the best degree of
coherence of the hopping motion. After that, the spectrum peak decreases with the further
increase of D. This means that in system (2) the conventional SR happens as the best cooperative
result of a weak periodic signal and white noise. To confirm this, we also plot the curve of
RA versus D in figure 4(a).

In figure 3, besides a sharp peak at the driving frequency, one can also see a distinct noise-
background spectrum with a profile very similar to the spectrum of the following Langevin
equation,

ẋ = b − sin x + Dξ(t) (9)

i.e., system (2) without periodic driving case. So the appearance of a spectrum peak at
another nonzero frequency can be regarded as reflecting the noise-induced coherence before
the periodic driving is applied. Calculating the quality factor β of the background power
spectrum shows that the spontaneous SR which occurs in system (1) is still preserved in the
presence of periodic modulations (see figure 4(b)). Here β is taken as β = ωph/W , where h
is the height of the peak of the noise-background power spectrum (exclude the spectrum peak
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Figure 3. The power spectra for different noise intensities of system (2) for b = 0.97, A =
0.02, ω = 0.2.
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the noise-background spectrum versus D of system (2) for b = 0.97, A = 0.02, ω = 0.2.

at the driving frequency), W is the width of the spectrum measured at the height h/
√

e and
ωp is the peak frequency [24].

Now let us explore the situation when the amplitude of the driving signal is relatively
larger. For illustration, here we take b = 0.9, A = 0.09 and ω = 0.4. Figure 5 is the
deterministic phase portrait, where limit cycles (or periodic solutions) are displayed. And
in figure 6, power spectra for different noise intensities are plotted. One can see that when
noise is introduced, the power spectrum is still composed of two distinct parts: a sharp
peak at the input frequency and the noise-background spectrum with the peak at another
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Figure 6. The power spectra of system (2) for b = 0.9, A = 0.09, ω = 0.4.

frequency. Nevertheless, with the increase in the noise strength, the height of the spectrum
peak at the driving frequency is decreasing. So for this set of parameters, no conventional SR
happens (see figure 7(a)). However, the bell-shaped curve of the quality factor β versus D in
figure 7(b) shows that there still exists spontaneous SR happening at D ≈ 0.7.
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3.2. A > 1 − b

Furthermore, let us investigate the case for superthreshold periodic modulations (A > 1 − b).
For not too large amplitude of the periodic modulation, system (4) has limit cycles on the
cylinder. Then what will the phenomenon be in this superthreshold case? Here we take the
parameters b = 0.9, A = 0.3, ω = 0.423 for illustration. After plotting the phase portraits
in figure 8, we plot the power spectra for different noise intensities in figure 9. We find that
the noise-background spectrum is now effectively suppressed. So in this case, no spontaneous
SR occurs. However, with the increase in the noise strength, the response amplitude (RA)
versus the noise intensity D undergoes a resonance-like process. This just characterizes the
occurrence of the conventional SR.

Combining the phenomena for different sets of system parameters in section A, we learn
that for a weak periodic driving (A � 1), there occurs not only the conventional SR in system
(2), but also the spontaneous SR which has occurred without periodic driving is preserved.
However, for a subthreshold but relatively larger periodic modulation, the output at the driving
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response amplitude RA versus D for b = 0.9, A = 0.3, ω = 0.423.

frequency is suppressed. Then there is no conventional SR phenomenon, but spontaneous
SR can still be observed. Notwithstanding, when the strength of a periodic input exceeds
1 − b, the noise-background spectrum is effectively suppressed and the output at the driving
frequency is greatly enhanced. Consequently, no spontaneous SR, but only conventional SR
happens as the best cooperative result of white noise and a periodic driving.

The reason for the above different responses of the system is not difficult to understand
in the following way. Without periodic driving, it has been clarified in [20] that for every
fixed noise intensity (not too large), the power spectrum of the output of system (9) has a
wide range of frequencies with finite spectrum height. When a periodic driving is applied:
(i) for A � 1, since the periodic driving is weak, then it can hardly concentrate the signals
distributed widely on different frequencies (see the obvious noise-background spectrum in
figure 3(c)) just close to the driving frequency. So besides keeping synchronization with the
external periodic driving and the conventional SR occurring at an optimal noise intensity,
system (2) still preserves the original noise-induced behaviour and there happens spontaneous
SR at another suitable noise strength. (ii) If a relatively large but still subthreshold modulation
is applied, one can see from figure 5 that the distance between a SLC and its neighbouring
ULC is much larger than that in figure 2 which corresponds to the case A � 1. Then hopping
between SLCs in this case becomes much more difficult than in the case A � 1. Since
the system spends more time wandering near the SLC, and larger amplitude of the periodic
modulation corresponds to larger value of R0 which is not good for boosting the response
amplitude, so the output decreases as compared to the case without noise perturbation. Hence
no conventional SR occurs. But the periodic modulation in this case is still not strong enough
to change the original noise-induced behaviour, so spontaneous SR is still preserved. (iii) For
the superthreshold modulations (A > 1 − b), figure 8 shows that the ULC is very close to the
SLC, then only a weak noise perturbation can induce the hopping motions between the SLCs
with a good degree of coherence. So the noise-background spectrum is well suppressed and
the output at the driving frequency is greatly facilitated. Thus only conventional SR occurs at
an optimal noise intensity.

So far, we have manifested the different interplay results of noise and periodic driving
in the cases when system (4) has limit cycles. Now let us further investigate the situation
when the deterministic system (4) has no limit cycle on the cylinder. Figure 10 is the phase
portrait of system (4) for b = 0.9, A = 0.4 and ω = 0.2. It is shown that without any noise
perturbation, solutions of the deterministic system, which wind around the cylinder E2, are
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Figure 10. (a) The phase portrait of system (4), (b) the response amplitude RA versus D for
b = 0.9, A = 0.4, ω = 0.2.

all running periodic. Then it is easy to conclude that adding noise can only destroy such a
regular motion. This is confirmed in figure 10(b), where the response amplitude of the output
is decreasing with the increase in the noise level. Numerical simulations for other sets of
parameters (for which the deterministic system has no limit cycle) also show the same result.
Therefore it is impossible for SR to exist when system (4) has no limit cycle.

4. Concluding remarks

We have given a systematic investigation of SR in an over-damped Langevin system driven
by a periodic signal plus white noise, based on qualitative analysis of the dynamics of the
corresponding deterministic system. It has been shown that for a subthreshold periodic
driving (A < 1 − b), there exist a unique stable periodic solution and a unique unstable
periodic solution in every strip x ∈ (2kπ − π/2, 2kπ + 3π/2] on the cylinder E2; and for a
superthreshold periodic modulation, there exists a critical value ωc(A) such that for ω > ωc(A),
the situation is the same as the subthreshold case, while for ω < ωc(A), no periodic solution
exists.

Secondly, based on such clear dynamical pictures, SR are shown to exist only when the
deterministic system has stable periodic solutions. And for different periodic modulations,
the noise-driven system has different responses. More precisely, for a weak subthreshold
periodic driving, both conventional SR and spontaneous SR are observed; while for a relatively
large but still subthreshold driving, only spontaneous SR occurs; as for a superthreshold
driving, no spontaneous SR but only conventional SR exists.

Thirdly, though the considered model is simple, the results we obtained here are generic.
We will further show in our forthcoming work that for systems of N overdamped pendula
coupled to their nearest neighbours

ẋi = b − sin xi + K(xi−1 + xi+1 − 2xi) + A cos ωt + Diξ(t) (10)

similar phenomena can be observed. Even more, the results can be further extended to the
Josephson junction arrays governed by the damped, driven, discrete sine-Gordon equation

ẍi + αẋi = b − sin xi + K(xi−1 + xi+1 − 2xi) + A cos ωt + Diξ(t) (11)

when the damping coefficient α is not very small. Precise discussions will be presented in our
subsequent papers.
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